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We investigate the problems of finding the optimal loads acting on a plate,which 
insure the best root-mean-square (RMS) approximation to a given distribution of 

bending and torsional moments, or of the displacements. We study the problems 
of existence and uniqueness of the optimal solution, and establish the necessary 
and sufficient conditions of optimality under the assumption that the manifold 

of admissible leads is a closed convex set in some Hilbert space. 

1. Certain relrtionrhipr of the theory of plater. Auxiliary 
o88umptlonr. We shall consider the inverse problems of plates of variable thickness. 
The equation of flexure of such a plate has the form [l] 

Here u (z, y) denotes the deflection of the median plane of the plate, v is the Pois- 
son’s ratio which is a nonnegative constant, g (IC, y) is the external load intensity, 
D (1c, y) is the torsional rigidity of the plate and 52 is an open bounded region on the 



plane with the boundary 5’. 
Let us consider the case of mixed boundary conditions when the plate is clamped along 

a part S, of the boundary, and freely supported along the remaining part S, of the boun- 
dary. The boundary conditions have the form 

Here 12, and lzyare the direction cosines of the outer unit vector normal to the boundary 
S ; S = S, U Sz and s, fl S, is an empty set. In particular, if one of the sets 
S, (S,) is empty, then we have the case of a plate freely supported (clamped) along its 

whole edge. 
We introduce now the Soboiev space Hrn (52) (m > 2 is an integer) 

H’” 04 = {v I Dar, E L, (i-q, I a [ \i m ) 

The space H”” (a2) has the norm 

il v bP$--l) 

Let us denote by i’ a Hilbert space obtained by closure on the norm of the space H2(~~) 

of the set of smooth functions satisfying the first two conditions of (3.. 2), and introduce 
in the space V the following bilinear form: 

In what follows, we shall need the following assumptions: 
1) D (x, y) is a function measurable on Q and satisfying the inequality 

k, < D (x, y) < ks, k,, k,! = const~ > 0 fl. 3) 

almost everywhere on Q . 
2) The constant v satisfies the inequality 

O<Y-=3 (1.4 

We shall show that in the space V the norm of the space Ha (a\ is equivalent to the 
norm 

II l.4 [v = [a (u, U)l’lJ Il. 5) 

(1.6) 

Taking into account (1.4) and the inequalities (1.3) and (1.6), we obtain 
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(~)2+uqaxdY, Vu E V, cl = const > 0 

The last estimate is obtained with the use of the Poincare-Friedrichs inequality [2] .Fron 
the inequalities (1.7) we obtain 

a (u, 4 > c2 II 7.4 Itf,cnb Vu E V, c2 = const > 0 

By virtue of the inequality (1.3) the converse inequality also holds 

a (II* u) --< c3 (1 u /ii* (L-J)? vu E v, c3 = const > 0 

Let us introduce the following symmetric bilinear forms for the elements U, u E V : 

b(u, u> = &[(I +vy (qg+C+J + 
n 

(1.8) 

Similarly to the previous arguments we can use the inequality (1.6) with D = i to 
show, that the norm (1.5) in the space V is equivalent to the norm 

I/ u I/* =-_ I 0 (u, zL)l’/’ (1.9) 

Thus the following assertion holds: 
Lemma 1.1. The norm of the space H2 (a) is equivalent to the norms (1.5) 

and (1.9) in the assumptions (1) and (2) in the space V . 
Let U be a Hilbert space on the field of real numbers and let c’g be a closed convex 

set in U. 
Theorem 1. 1. Let n (f, R) be a continuous bilinear form symmetric on U , 

3-c (fl g) = 2-l k, f), satisfying the condition 

n (f, f) > c II f l)uZ1 Y’f E U, C = const > 0 (1.10) 

and L (f) a linear form continuous on U . Then a unique element f. E Ua exists 

for which 
fi (fo7 lo) - 25 (fo) = inf (n (g, g) - 2L (g)) 

AfE ua 
(1. 11) 

The minimizing element t0 is characterized by the fact that 

z (fur g - fo) - L (g - f0) a 0, vg E lJa 

If the bilinear symmetric form n (f, g) continuous on U does not satisfy the condition 
(1.10) but the set Ua is bounded, then an element f. E Ua exists which satisfies the 
condition (1. 11). 

A proof of this statement is given in [3]. The form 3t (f, g) which satisfies the con- 
dition (1. lo), is called coercive form. 



2, Invsrw problem for a plats with a rprcfrl function for the 
banding moment,, We shall call the generalized solution of the problem (1. l), 
(1.2) the function u E V for which the condition 

a(u, h) = t;lghdxdy, VhEV (2. 1) 

holds. 
n 

From the results (see [4]) it follows : 
Theorem 2. 1. Let the assumptions (1) and (2) hold and g e ‘V*. Then the prob- 

lem (1. l), (1.2) has a unique generalized solution u for which the following relation 
holds : 

II u lb= JJ g//v* CL 2) 
Here and henceforth an asterisk denotes a conjugate space. Clearly the solution u of the 
problem (2.1) depends on g. Equation (2.1) defines this relationship unambiguously, 
Let us formulate the following problem: to find the load under which the distribution of 
the bending moments 111, and .I& and the torsional moment .&fry defined by the ex- 

will be as near as possible, in the sense defined below, to their prescribed values. 
We can express it more accurately by stating that, taking into account the assumptions 

(1) and (2), we consider the problem of a minimum of the functional 

( a2u fR) ” 
axaq -3 11 ‘- dxdy, gciii Va” 

where Va* is a closed convex set in space V”, and z : (a,? zs, za) is a specified 
element of the space H -- L? (62) :< L? (62) X L, (52). 

We introduce in the space V the following linear form: 

(2.4) 

and define on F” the following forms: 

n, (1, g) -= b (n (/), n (&‘I), L, (g) == Q, (u (g)) (2.3 

where O( ., . ) i.s defined by the relation (1.8). 
Removing the brackets from the integrand in (2.3), we find that the functional (2.3) 

differs from the functional 

I, ($7) = ST, (g,g) - 2L, (g), g E vLi* (2.6) 
by a constant term. 

Theorem 2. 2. Let the assumptions (1) and (2) hold, z E Ii and the function 

IL be defined as the solution of the problem (2. I). Then there exists a unique element 

go e I’S* for which (2.7) 
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The element go is described by the relation (2.1) in which g = g, , and by the inequal- 

ity 
% (go. i - &l - L* (f - &I > 0, Vf E VI?* (2.3) 

Proof. Using Theorem 1.1 we can show that there exists a unique element g, EY 
lla* for which 

(2. S) 

In fact, % v, a) is a bilinear and symmetric form. Using the first relation of (2,5), 
Lemma I. 1 and Theorem 2.1, we obtain 

where Cl and C, ace positive constants. From this it follows that 3tl (f, g) is a coer- 
cive form continuous in V*. From the relations (2.2) and (2.4) and the second relation 
of (2.Q follows 

I&(g) I\<~,ll~ItHII~~~~Il~=~~ilztlrrII~uv* 

II Z IIH = II ZI ILKA) + II Za &tdn) + 11 ZS JOLT, CS =i const > 0 

therefore Lz (ir) is a linear form continuous on V* , 
Thus the conditions allowing for the application of Theorem 1.1 hold, and a unique 

element g, EZ Vo* exists for which the relations (2.8) and (2.9) hold. The functionals 
(2.3) and (2.6) differ from each other by a constant term, and the theorem is proved. 

Let us transform the inequality (2.8) using the conjugate state p (go) E V defined 
by the equation 

atPbd9 w =b(u(g,), 4 -Qz(4, VhE v (2.10) 

Setting in (2.10) h = fl (f) -- u (go) and taking into account the relations (2.5) and 
(2.8), we obtain 

b (u (go), u (0 - u (go)) - Q, (u (I) - u @J) = (2.11) 

and relations (2.10) follows (2.8), and we have the following : 
C or 011 ary . Let the assumptions (1) and (2) hold and z E H. The necessary and 

sufficient condition for the element g, E F’S* to satisfy (2.7) is, that the conditions 
(2.1) hold for g = g,, (2.10) and (2.12). 

9, Invatrrr problem with li rpscirl function for the deflaotion, 
We formulate the problem of determining a load for which the deflection function will 
deviate as little as possible, in the sense defined below, from the given function, To ex- 
press it more accurately, we consider the problem of a minimum of the following func- 
tional : 

@(II) =I 1s (u (g) - ZY &I- dy, g E v,* 
It 

(3.1) 

where t is a specified element of the space L,, (a) and u (g) is a solution of (2.1). 
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In order to apply Theorem 1.1, we introduce the following symmetric bilinear form: 

% (f, g) = 11 u (f> u (g) &&I (3.2) 

Taking into account (2. Z), we have * 

I JQ (17 g) 14 II 24 (i> IIW II u (g) I&(n) < C u u (I) I/v 1 u (g) /Iv = 
c II f II i” II g ]Iv*, C = const >O 

Therefore n, (f, g) is a form continuous on 1 -* It is not however & cdercive form, 
Taking into account the fact that z E L, (62) and using (2.2), we can confirm that the 
linear form _ ,. 

is continuous in I/‘*. n 

Let us now denote by X the set of such elements f E Va* that 

@ (f) -:a$+&@ (g) (3.4) 

The form (3.2) is not coercive, therefore the set X can be empty. However if the set 
Va’ is bounded, then X is not empty (this follows from Theorem 1.1). If we replace 
the functional (3.1) by the “regularized” ~nctional 

(3.5) 

then the corresponding bilinear form 

Jcs (f, g) = t U, (f) n (g) ok &/ + a if, g)v* 

where If, glv* is a scalar product in V*, will be coercive since n3 (g, g) > u 11 g I/~;_ 
Applying Theorem 1.1, we obtain the follow~g : 

Theorem 3. 1. Let the assumptions (1) and (2) hold, z E ~5, (a) and the func- 
tion u be defined as the solution of the problem (2.1). Then there exists a unique ele- 
ment f E Va” for which 

(3.6) 

The element f is defined by the relation (2. 1) for g = f , and by the inequality 

Let us define the conjugate condition p (f) E TJ as a solution of the equation 

Then, similarly to the previous case, we obtain the following : 
Corollary. Let the assumptions (1) and (2) hold and z E L, ($2). The necessary 

and sufficient condition for the element f E l’a* to be a solution of the problem (3.6) 

is, that the relation (2.1) for g -= j and the relation (3.8) hold, as well as the inequality 

ss l P(J)(g--f)dscEy+a[f,g--f)v*>o, VgEVo 
n 

Notes. 1. Let Vd* be a closed convex set in a fi~te-dime~ional subspace V,* of 
the space P. In this case a unique element f E V,* exists for the functional (3.1) 



such, that 

Indeed, in a f~ite-Dimensions space any two norms are equivalent, therefore 

(3.9) 

Using the relations (2. Z), (3.2) and (3. lo), we obtain 

J% (g 4) = 1 u (g) lfj*(Q) > c41’ II u (g) lb” = GZ II g I$* 3 vg E v?a* 

~on~quently the form “1% (f, g) is coercive in V,* and the existence of a unique ele- 

ment f E Va* satisfying the relation (3.9) follows from Theorem 1.1. 

2. We may consider the problem of a minimum of the functional 

4% fg) -I @ (g) -!- o 1 g II& (a)? (J. > 6, g E L,, (9) (3.11) 

where L,, (!2) is a closed convex set in the space L, (Q). 
Using similar reasoning we can show that there exists a unique element f E L, (a) 

for which ‘Da (f) = inf @Z (d 
@a-,@) 

We note that when the set X of solutio4 of the nonregularized problem (3.4) is non- 

empty, then the solutions of the problem (3.6) converge in V* , as a -+ D , to the ele- 
ment f,, which is a projection of the zero element in J’* on the set X (see [33). 

We have established above the existence of a unique solution of the optimizationprob- 
lem with a special function for the displacements in the case of regularization of the 
latter. We shall now show that under certain assumptions a unique solution of a nonre- 
gularized problem can also exist. 

Let us make, in addition to (1) and (2), the following further assumptions: 
3) Q is a bounded region on a plane with a boundary S, the latter is an infinitely 

differentiable curve. Locally, Q is on one side of S, i.e. 52 U S is a manifold with 

an edge belonging to class Cm (see [5, 63); 
4) The function D (r, y) is inftnitely differentiable in the region a = Q [J S. 
Let us consider the case of a plate rigidly clamped along the whole contour. The 

boundary conditions have the form 

u=O on S, z&t- ay 
*n,-- 0 on S (3.12) 

We denote by VI the space obtained by closure on the norm of the space 1.” (a) of 
the set of smooth functions u (z, y) satisfying (3.12). We define, as a weak solution 
of the problem (1. 1), (3. 12), the function u E L, (Q) for which 

(1 nPh dxdy = $5 gh dx dy, Qh E VI (3.13) 
o n 

where the operator P is determined by (1.1). 
Below we shall utilize the following result: if the assumptions (1) - (4) all hold and 

Cp (2) is a given function belonging to the space L, (Q), then the solution of the prob- 
lem 

Ph = cp, h = 0 on S, $&,+g ny = 0 on S 

belongs to the space H4 (B) (see [7]). In other words, FJ is an isomorphism from V, 
onto L, (Q) (assertion A). Therefore a unique element u E L, (52) exists for 6Tge V,* 
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for which the identity (3.13) holds, 
Next we shall consider the problem of a minimum of the functional 

@(gf = \\ (big) - z)2~~~~, g EE G 
&a 

(3.14) 

where z is a specified element of the space L, (a), u (g) is a solution of (3.13) and 
V,a* is a closed convex set in the space V,* 

Theorem 3. 2. Let the assumptions (1) - (4) all hold and z E Ls (II?). Then 
there exists a unique element f El: via* for which 

O(f) = inf CD(g) 

&r&8 
(3.15) 

This element f is characterized by the relation (3.13) in which g = f , and the me- 
quality 

~(U(f)-Z)(U(g)--u(l))rdz~Y~o, ‘t”gE-Ka (3.16) 

Proof . We shall show that the symmetric bilinear form 

fi(fl g) = ss~~~)~(g)~~~~ 
D 

corresponding to the functional (3.14) is continuous and coercive in VI*. Since the 

assumptions (1) - (4) all hold, we find that by virtue of the arguments given above, the 

assertion A holds. From this, setting Ph, = u in (3.13), we have 

If u II&n, = f\ &a r&z &?J < /I g J/v** /j 4 jjv, f c u g Ilw II 24 UL&-AOfr c = cxmst > 0 
a 

which yields 
(3.17) 

The last inequality gives 

135 (f, g) ] = 18 u (f) u (g) dz & I< 1 u (f) IILdn) U u tg) IlLm < C2 II f IIW II g h 

ConWWently the form 3t (f, g) is continuous on VI*. Furthermore, from (3.13) and 
the assertion A, we have 

i.e. the form n (f, g) is coercive. Taking into account the fact that .Z EZ J& (n) and 
using the inequality (3.1’7), we can show that the linear form 

Lz (g) = 1s u (g) z d.r dy 
P 

corresponding to the functional (3. 14) is continuous on VI*. The existence of a unique 
element f E VI@* for which the relations (3.15) and (3.16) hold, now follows from 
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Theorem 1.1. 
Let us define the conjugate state p (f) E v, as the solution of the problem 

PP (f) == a (f) - 2 (3.19) 

Then the element f is characterized by the relations (3.13) in which g -- f, (3.19) 
and the Inequality 

!s .=~(~)(~-~)~~~~~o, VgEIr;a (3.20) 

h)l 

Let us now pass to the case of a hinged plate, We denote by pa the space obtained 
by closure on the norm of fi” (Q) of the set of smooth functions u, (x, y) satisfying 

the boundary conditions 

u = 0 Ha S, v 
( $$+$) i-(1-v) ($%a+ (3.21) 

&4 

-$- %s + 2 (32.a~ n,n,) =0 HaS 

The function u E L, (62) for which 

ss 
uphdxdy = * ghdxdy, \l’hEV, ss (3.22) 

n D 

we shall call a weak solution of the problem (1.1). (3.21). If the assumptions (1) - (4) 
all hold, then a unique solution of the problem (3.22) exists for Vg E V,* . Let us 
consider the problem of a minimum of the functional 

where u (g) is the solution of the problem (3.22) and vss* is the closed convex set in 

the space V,*. 
Using arguments similar to those used previously, we prove 
Theorem 3.3. Let the assumptions (1) - (4) all hold and z E L, (51). Then 

there exists a unique element f E Vsa* for which 

Qr (ff = in! @r(g) 
rGzvti 

This element f is characterized by the relation (3.22) with g = f and the inequality 

SS (~(f)--4(w?--w)~x:Y>09 VlfEG 
n 

The necessary and sufficient conditions of optimality can be established using the con- 
jugate conditions which ace expressed by the relation (3.22) with g = f, Eq. (3.19) in 

which u (f) is the solution of the problem (3.22) and p (f) E Vz, and the inequality 
(3.20) which must hold for every g belonging to vs,*. 
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An axisymmetric problem of deformation of a space weakened by a spherical 

cut with the external forces or displacements given at the edges of the cut, is 
solved in quadratures. The state of stress is expressed in terms of the analytic 
functions of a complex variable. The holomorphic character of these functions 

is studied and the nonholomorphic terms separated. Explicit formulas for the 
stresses on a surface complementing the cut to a complete sphere, are given for 
the case of uniform extension at infinity. The erroneous character of a number 
of solutions obtained earlier, is indicated. 

1, Let an elastic space be weakened by a slit which coincides with a part of a spher- 
ical surface of unit radius with its center at the coordinate origin _ In the meridional 

section the slit coincides with the arc _4&‘R (see Fig. 1) . 
The forces pz’, pr’ and pL-, pr are given 

at the upper and lower edge of the slit, respect- 
ively. The stresses and displacements vanish 
at infinity. The displacments of the slit edges 
are assumed bounded, and although the stresses 
at these points may be infinite, their singularities 

must be of order strictly less than unity. 
Similar assumptions were used in solving this 

problem in [l- 4) and others, but the holomor- 
phic character of the functions was wrongly as- 
sessed and the results obtained could therefore 
only be used for a restricted choice of loads. 

The stresses in a body under an axisymmetric 
load are given in terms of two analytic functions 

Fig. 1 rp and I$ of the complex variable 5 [5l,by 

(1. 1) 


